
Zeros of a Polynomial Function 
 

An important consequence of the Factor Theorem is that finding the zeros of a 
polynomial is really the same thing as factoring it into linear factors.  In this section we 
will study more methods that help us find the real zeros of a polynomial, and thereby 
factor the polynomial. 
 
Rational Zeros of Polynomials: 
 
The next theorem gives a method to determine all possible candidates for rational zeros 
of a polynomial function with integer coefficients.   
 
 Rational Zeros Theorem:   
 
 If the polynomial ( ) 1

1 1...n n
n nP x a x a x a x a−

− 0= + + + +  has integer  
 coefficients, then every rational zero of P is of the form 
 

 p
q

 

 
 where p is a factor of the constant coefficient  0a
 and q is a factor of the leading coefficient   na
 
 
Example 1:   List all possible rational zeros given by the Rational Zeros Theorem of  
 P(x) = 6x4 + 7x3 - 4 (but don’t check to see which actually are zeros) . 
 
 Solution:   

 
 Step 1:  First we find all possible values of p, which are all the factors  
  of .  Thus, p can be ±1, ±2, or ±4. 0 4a =
 
 Step 2:  Next we find all possible values of q, which are all the factors  
  of .  Thus, q can be ±1, ±2, ±3, or ±6. 6na =
 
 Step 3:  Now we find the possible values of p

q  by making combinations  

  of the values we found in Step 1 and Step 2.  Thus, p
q  will be of  

  the form factors of 4
factors of 6 .  The possible p

q  are 
 

  1 2 4 1 2 4 1 2 4 1 2,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,
1 1 1 2 2 2 3 3 3 6 6

± ± ± ± ± ± ± ± ± ± ± ±
4
6

 



Example 1 (Continued): 
 
 Step 4:   Finally, by simplifying the fractions and eliminating duplicates,  
  we get the following list of possible values for p

q . 
 

  1 1 2 41,  2,  4,  ,  ,  ,  ,  
2 3 3 3

± ± ± ± ± ± ± ±
1
6

 

 
Now that we know how to find all possible rational zeros of a polynomial, we want to 
determine which candidates are actually zeros, and then factor the polynomial.  To do this 
we will follow the steps listed below. 
 

Finding the Rational Zeros of a Polynomial:   
 

1.  Possible Zeros:  List all possible rational zeros using the Rational Zeros 
Theorem. 

 

2.  Divide:  Use Synthetic division to evaluate the polynomial at each of the 
candidates for rational zeros that you found in Step 1.  When the 
remainder is 0, note the quotient you have obtained. 

 

3.  Repeat:  Repeat Steps 1 and 2 for the quotient.  Stop when you reach a 
quotient that is quadratic or factors easily, and use the quadratic formula 
or factor to find the remaining zeros. 

 

Example 2:  Find all real zeros of the polynomial P(x) = 2x4 + x3 – 6x2 – 7x – 2. 
 

 Solution:  
 

 Step 1:  First list all possible rational zeros using the Rational Zeros  
  Theorem.  For the rational number p

q  to be a zero, p must be a  
  factor of a0 = 2 and q must be a factor of an = 2.  Thus the  
  possible rational zeros, p

q , are 
 

   11,  2,  
2

± ± ±  



Example 2 (Continued): 
 
 Step 2:   Now we will use synthetic division to evaluate the polynomial at  
  each of the candidates for rational zeros we found in Step 1.   
  When we get a remainder of zero, we have found a zero. 
 

  
Since the remainder is not zero, 

                                  

1 2 1 6 7 2

  2 3 3 1

            

0

  2 3 3
    1 is not a 

10 12
zer

  
o

←
+

− − −

− −

− − −
 

  
Since the remainder is zero, 

                                 

1 2 1 6 7 2

  2 1

                 1 is 

5 2

  2 1 5 2 0
a zer

 
o

 

− − − −

−

− −
−

− ←
 

 
  This also tells us that P factors as 
 
  2x4 + x3 – 6x2 – 7x – 2 = (x + 1)(2x3 – x2 – 5x – 2) 
 
 Step 3:   We now repeat the process on the quotient polynomial  
  2x3 – x2 – 5x – 2. Again using the Rational Zeros Theorem, the  
  possible rational zeros of this polynomial are  
 

   11,  2,  
2

± ± ± . 

 
  Since we determined that +1 was not a rational zero in Step 2,  
  we do not need to test it again, but we should test –1 again.  
 

  
 Since the remainder is zero,

                             

1 2 1 5 2

   

 

  2 3 2

     
              1 is again a zero

 2 3 2 0    

− − −

−

−

−

←− −
 

 
  Thus, P factors as 
 
  2x4 + x3 – 6x2 – 7x – 2  = (x + 1)(2x3 – x2 – 5x – 2) 
   = (x + 1) (x + 1)(2x2 – 3x – 2) 
   = (x + 1)2 (2x2 – 3x – 2) 
 
 



Example 2 (Continued): 
 
 Step 4:   At this point the quotient polynomial, 2x2 – 3x – 2, is quadratic.   
  This factors easily into (x – 2)(2x + 1), which tells us we have  

  zeros at x = 2 and 1
2

x = − , and that P factors as 

 
  2x4 + x3 – 6x2 – 7x – 2  = (x + 1)(2x3 – x2 – 5x – 2) 
   = (x + 1) (x + 1)(2x2 – 3x – 2) 
   = (x + 1)2 (2x2 – 3x – 2) 
   = (x + 1)2 (x – 2)(2x + 1) 
 
 
 Step 5:   Thus the zeros of P(x) = 2x4 + x3 – 6x2 – 7x – 2 are x = –1, x = 2,   

  and 1
2

x = − . 

 

Descartes’ Rule of Signs and Upper and Lower Bounds for Roots: 
 

In many cases, we will have a lengthy list of possible rational zeros of a polynomial.  A 
theorem that is helpful in eliminating candidates is Descartes’ Rule of Signs.   
 
In the theorem, variation in sign is a change from positive to negative, or negative to 
positive in successive terms of the polynomial.  Missing terms (those with 0 coefficients) 
are counted as no change in sign and can be ignored.  For example,  
 

 
has two variations in sign.   
 

 Descartes’ Rule of Signs:  Let P be a polynomial with real coefficients 
 

  1.  The number of positive real zeros of P(x) is either equal to the number  
   of variations in sign in P(x) or is less than that by an even whole  
   number. 
 

  2. The number of negative real zeros of P(x) is either equal to the number  
   of variations in sign in P(–x) or is less than that by an even whole  
   number. 
 



Example 3:   Use Descartes’ Rule of Signs to determine how many positive and how  
  many negative real zeros P(x) = 6x3 + 17x2 – 31x – 12 can have.  Then  
  determine the possible total number of real zeros. 
 

 Solution: 
 

  Step 1:   First we will count the number of variations in sign of  
 
   . ( ) 3 26 17 31 1P x x x x= + − − 2

    
 
   Since there is only one variation, P(x) has one positive real zero. 
 

  Step 2:   Now we will count the number of variations in sign of  
 
   . ( ) 3 26 17 31 1P x x x x− = − + + − 2

    
 
   P(–x) has two variations in sign, thus P(x) has two or zero  
   negative real zeros. 
 

  Step 3:   Finally by combining our findings in the previous steps, P(x)  
   has either one or three real zeros. 
 

 
 

Another theorem useful in eliminating candidates for real zeros of a polynomial is the 
Upper and Lower Bounds Theorem.   
 
We say that a is a lower bound and b is an upper bound for the roots of a polynomial 
equation if every real root c of the equation satisfies a ≤ c ≤ b. 
 



The Upper and Lower Bounds Theorem:  Let P be a polynomial with real coefficients. 
 
 1. If we divide P(x) by x – b (with b > 0) using synthetic division, and if the row 
  that contains the quotient and the remainder has no negative entry, then b is 
  an upper bound for the real zeros of P. 
 
 2. If we divide P(x) by x – a (with a < 0) using synthetic division, and if the  
  row that contains the quotient and the remainder has entries that are  
  alternately nonpositive (negative or zero) and nonnegative (positive or zero),  
  then a is a lower bound for the real zeros of P. 
 

Example 4:   Show that a = – 4 and b = 5 are lower and upper bounds for the real zeros  
  of the polynomial P(x) = x4 – 2x3 – 14x2 + 14x + 24. 
 

 Solution: 
 

  Step 1:   We will start to show a = – 4 is a lower bound of  
   P(x) = x4 – 2x3 – 14x2 + 14x + 24, by dividing P(x) by x – (– 4)  
   using synthetic division. 
 

   
Entries alternate

               

4 1 2 14 14 24

     4 24 40 104

     
                           

 1 6 10 26 128
          

  
    in si n

 
g

− −

 

−

− ←

−

−

−
 

 

  Step 2:   By the Upper and Lower Bounds Theorem, – 4 is a lower bound  
   of P(x), because the row that contains the quotient and  
   remainder has entries that are alternately nonpositive and  
   nonnegative. 
 

  Step 3:   Now we will show b = 5 is an upper bound of  
   P(x) = x4 – 2x3 – 14x2 + 14x + 24.  Divide P(x) by x – 5 using  
   synthetic division.   
 

  

5 1 2 14 14 24

    5 15 5 95

    1 3 1 19 All entries119   pos it e iv

−

← 

−

 

 

 Step 4:   By the Upper and Lower Bounds Theorem, 5 is an upper bound  
  of P(x), because the row that contains the quotient and  
  remainder has no negative entry. 



Example 5:   Find all rational zeros of P(x) = 6x4 – 23x3 + 3x2 + 32x + 12, and then find  
  the irrational zeros, if any and graph the polynomial.  If appropriate, use  
  the Rational Zeros Theorem, the Upper and Lower Bounds Theorem,  
  Descartes’ Rule of Signs, the quadratic formula, or other factoring  
  techniques. 
 
 Solution:   
 
  Step 1:   First we will use Descartes’ Rule of Signs to determine how  
   many positive and how many negative real zeros  
   P(x) = 6x4 – 23x3 + 3x2 + 32x + 12 can have. 
 

    

    
 
   Counting the number of variations in sign of P(x) and P(–x), we  
   see that P(x) = 6x4 – 23x3 + 3x2 + 32x + 12 has zero or two  
   positive real zeros and zero or two negative real zeros, making a  
   total of either zero, two or four real zeros.   
 

 
 
  Step 2:   Next, using the Rational Zeros Theorem, we list the possible  
   rational zeros of P, and then begin testing candidates for zeros. 
 
   The possible rational zeros of P are 
 

   1 1 1 2 4 3,  ,  ,  ,  1,  ,  ,  2,  3,  4,  6,  12
6 3 2 3 3 2

± ± ± ± ± ± ± ± ± ± ± ±   

 
   We will check the positive candidates first, beginning with the  
   smallest. 



Example 5 (Continued): 
 

1  is not
6

           

1 6 23 3 32 12
6

11 1 287         1

                          

3 9 5

   

4
2 2

   

87 935    6 22   
3 9 54

                 a zero

−

− −

− − ←
1  is not
3

                  

1 6 23 3 32 12
3

4 92

             

         2 7
3 9

9

              

2 20

   

0    6 2

       

1 4

  

  
3

   a
9

zero

−

− −

− − ←

 

 

1  is not
2

              

1 6 23 3 32 12
2

7 57         3 10

                         

 

 

 
2 4

57 105    6 20 7  

                    a zero

  
2 4

−

− −

− − ←

       …  (we continue testing candidates until) … 

 

( )

2 6 23 3 32 12

       12 22 38 12

    6 11 19 6 0   2 0P

−

− − −

←− − =−

 

 
  So 2 is a zero, and P(x) = (x – 2)(6x3 – 11x2 – 19x – 6). 
 
 Step 3:   We continue by factoring the quotient.  Again use the Rational  
  Zeros Theorem to list the possible rational zeros, and test  
  candidates for zeros.   
 
  The possible rational zeros of the quotient are 
 

  1 1 1 2 3,  ,  ,  ,  1,  ,  2,  3,  6
6 3 2 3 2

± ± ± ± ± ± ± ± ± . 

 
  From Step 1 we know we cannot have just one positive real  
  zero, so we will continue testing positive candidates.  Also, in  

  Step 2, we already tested 1 1 1 2 4 3,  ,  ,  ,  1,  ,  and  
6 3 2 3 3 2

 and  

  found they were not zeros, so we do not need to test them again,  
  but we do need to test 2 again. 



Example 5 (Continued): 
 

2 is not
        

2 6 11 19 6

       

              

12     2 34

    6     1 17 40   
                         a zero

− − −

←

−

− −
    

( )

3 6 11 19 6

      18   21   6

    6     7     2  0     3 0P

−

←

− −

=
 

 
  Thus 3 is a zero, and P(x) = (x – 2)(x – 3)(6x2 + 7x + 2). 
 
 Step 4 (note):    In addition to finding that 3 is a zero of P, we also found  
  in the previous step that 3 is an upper bound for the zeros of P(x), 
  because the row that contains the quotient and the remainder has  
  no negative entry.  But, from Step 1, we already knew that there  
  can not be more than two positive zeros.  Had we not known  
  from Descartes’ Rule of Signs that we do not need to test further  
  positive candidates, we still would not have needed to check for  
  more, because all the remaining positive candidates are greater  
  than 3. 
 
 Step 5:   We continue by again factoring the quotient polynomial, which  
  is now a quadratic. 
 

  
( ) ( )( )( )

( )( )( )( )

2

  Fac

2 3 6 7 2

2 3 2 1 3 2

P x x x x x

x x x x

= − − + +

= − − + +
 

tor quadratic
 

  Therefore the zeros of P are 1 22,  3,  ,  and 
2 3

− − . 

 
 Step 6:   Finally, going back to the guidelines for graphing polynomial  
  functions we discussed in Chapter 5 Section 1, we can graph  
 

   
( )

( )( )( )(

4 3 26 23 3 32 12

2 3 2 1 3 2

P x x x x x

x x x x

= − + + +

= − − + + ).
 
  We make our table of values using the zeros of P we found in  
  the previous steps. 



Example 5 (Continued): 
 

 
 
 P is of even degree and its leading coefficient is positive, therefore it has  
 the following end behavior: 
 
  y →  ∞  as  x →  ∞ and  y →  ∞  as  x →  – ∞ 
 
 Thus, the graph of P(x) = 6x4 – 23x3 + 3x2 + 32x + 12 is completed below. 

 

 
 

 



Example 6:   Find all rational zeros of P(x) = 2x4 + 7x3 + 9x2 + 21x + 9, and then find  
  the irrational zeros, if any and graph the polynomial.  If appropriate, use  
  the Rational Zeros Theorem, the Upper and Lower Bounds Theorem,  
  Descartes’ Rule of Signs, the quadratic formula, or other factoring  
  techniques. 
 
 Solution: 
 
  Step 1:   Use Descartes’ Rule of Signs to determine how many  
   positive and how many negative real zeros  
   P(x) = 2x4 + 7x3 + 9x2 + 21x + 9 can have. 
 
    ( ) 4 3 22 7 9 21P x x x x x 9= + + + +  

     
 
   P(x) has no positive real zeros, and zero, two or four negative  
   real zeros, making a total of either zero, two or four real zeros. 
 

 
 
 Step 2:   Use the Rational Zeros Theorem to list the possible rational  
  zeros of P, and synthetic division to begin testing candidates for  
  zeros. 
 
  The possible rational zeros of P are 
 

   1 3 9,  1,  ,  3,  ,  9
2 2 2

± ± ± ± ± ±  

 
  Since in Step 1 we determined there are no positive real zeros,  
  we can begin testing the negative candidates, starting with the  
  value closest to zero. 
 

   

1 2 7 9 21 9
2

      1 3 3 9

      2 6 6 18 0  1 0
2

 P ⎛ ⎞← − =⎜

−

⎝

−

−

⎟
⎠

− −  

 



Example 6 (Continued): 
 

  So 1
2

−  is a zero, and  

 

              

( ) ( )
( )( )

3 2

3 2 Factor 2 from last factor,

                                                multiply into first factor

1 2 6 6 18
2

2 1 3 3 9     

P x x x x x

x x x x

⎛ ⎞= + + + +⎜ ⎟
⎝ ⎠

= + + + +  

 
 Step 3:   Continue by factoring the quotient x3 + 3x2 + 3x + 9.  Possible  
  rational zeros are 
 
   1,  3, 9± ± ±
 
  Again we do not need to test the positive candidates because we  
  know there are no positive real zeros.  Starting with the value  
  closest to zero, 
 
 

 
 1 is not

                  

1 1 3 3 9

      1 2 1

      1 2 1 8
                         a zero

  ← −

−

− − −      
( )

3 1 3 3 9

      3 0 9

      1 0 3 0   3  0P

−

−

−

−

← =
 

 
 Thus –3 is a zero, and P(x) = (2x + 1)(x + 3)(x2 + 3). 
 

 Step 4:   The quotient polynomial is a quadratic, which can be solved  
  easily to give us two imaginary zeros 3x i=  and 3x i= − .   

1  Therefore the real zeros of P are ,  and 
2

3− − . 

 graphing polynomial functions. 

 
 Step 5:   Finally we will graph  
 

( ) 4 3 22 7 9 21 9P x x x x x= + + + +
  

( )( )( )22 1 3 x 3x x= + + +
 

 
  using the guidelines for



Example 6 (Continued): 
 

 
 
 P has the following end behavior: 
 
  y →  ∞  as  x →  ∞ and  y →  ∞  as  x →  – ∞ 
 

   
 
Up to this point we have studied polynomials in the real number system, and we have 
seen that an nth-degree polynomial can have at most n real zeros.  In this section we will 
study polynomials in the complex number system where an nth-degree polynomial has 
exactly n zeros, and so can be factored into exactly n linear factors. 
 
Fundamental Theorem of Algebra: 
 
In 1799 the German mathematician C. F. Gauss proved the Fundamental Theorem of 
Algebra.  This Theorem forms the basis for much of our work in factoring polynomials 
and solving polynomial equations. 
 
 



 Fundamental Theorem of Algebra:   

 Every polynom
 

ial ( ) ( )1
1 1 0... 1, 0n n

n n nP x a x a x a x a n a−
−= + + + + ≥ ≠  

 with complex coefficients has at least one complex zero. 
 
Because any real number is also a complex number, the theorem applies to polynomials 
with real coefficients as well. 
 
The conclusion of the Fundamental Theorem of Algebra is that for every polynomial 
P(x), there is a complex number c1 such that 
 

. 

rom the Factor Theorem (Section 5.2), this tells us x – c  is a factor of P(x).  Thus we 

 
where Q(x) has degree n – 1.  If the quotient Q(x) has degree ≥ 1 we can repeat the 
procedure of obtaining a factor and a quotient with degree 1 less than the previous 
quotient until we arrive at the complete factorization of P(x).  This process is summarized 
by the next theorem. 

 
 Complete Factorization Theorem:   
 
 If P(x) is a polynomial of degree n > 0, then there exist complex numbers  
 a, c1, c2, . . . cn (with a ≠ 0) such that  
 
  

( )1 0P c =
 
F 1
can write 
 

( ) ( ) ( )1P x x c Q x= −  

( ) ( )( ) ( )1 2 ... nP x a x c x c x c= − − −  
 

Theorem the numbers c1, c2, . . . cn are the zeros of P.  
  If the factor x – c appears k times in the complete 

Zeros Theorem:   

Every polynomial of degree n ≥ 1 has exactly n zeros, provided that a zero of  

In the Complete Factorization 
hese zeros need not all be different.T

factorization of P(x), then we say that c is a zero of multiplicity k.   
 
The next theorem follows from the Complete Factorization Theorem. 

 
 
 
 
 multiplicity k is counted k times. 

 



Example 7:   Factor the polynomial P(x) = 4x5 – 324x completely and find all its zeros.   
 State the multiplicity of each zero. 

 St  2:   Next, using the formula for a difference of squares, we have 
 

 
 
 Solution: 
 
  Step 1:   Since 4x is a common factor, we have  
 

( )P x
   

( )44 81x x= −
 

54 324x x= −

 
 ep

   
( ) ( )

( )(

4

2 2

4 81

4 9

P x x x

x x x

= −

= − + )9

  Step 3:   Again using the formula for a difference of squares, we have 

 

 

 

   
( ) ( )( )

( )( )( )

2 2

2

4 9 9

4 3 3 9

P x x x x

x x x x

= − +

= − + +
 

 
  Step 4: x2 i and –3i are zeros of this polynomial. 

x + 3i), and so 
   To factor  + 9, note that 3

   Thus x2 + 9 = (x – 3i)(
 

( ) ( )( )( )23 9x4 3P x x x x
   

( )( )( )(4 3 3 3 3 )x x x x i x= − + − +
 

= − + +

i

 Step 5:   Therefore the zeros of P are 0, 3, –3, 3i and –3i.  Since each of  
,  

he following table gives further examples of polynomials with their complete 

 

 
 
   the factors occurs only once, all the zeros are of multiplicity 1
   and the total number of zeros is five. 
 
T
factorizations and zeros. 

 



 
 
 
Example 8:   Find a polynomial with integer coefficients that satisfies the given  
  conditions that P has degree 5, zeros 0, 2, 3i, and –3i, with 2 a zero  

 of multiplicity 2, and with P(2) = 26. 

We are given that the zeros are 0, 2, 3i, and –3i, with 2 a zero  
   of multiplicity 2, thus by the factor theorem, the required  

  polynomial has the form 

 
 

 
 

Solution: 

  Step 1:   

 
 
   ( ) ( )( ) ( ) ( )( )20 2 3 3P x a x x x i x i= − − − − −  
 
   Note that the factor x – 2 is squared because 2 is a zero 
   multiplicity 2. 

with  

 



Example 8 (Continued): 
 
  Step 2:   Next we expand and simplify the polynomial. 
 

  

( ) ( )( ) ( ) ( )( )
( ) ( )( )
( ) ( )

( )

2

2

2 2

5 4 3 2

0 2 3 3

2 3 3

2 9                      Difference of squares

Expa

        

4 11 36 18        d n

P x a x x x i x i

ax x x i x i

ax x x

a x x x x x

= − − − − −

= − − +

= − +

= − + − +

 

 
  Step 3:   Now we must determine what a is.  We know that 
 

   

( ) ( )5 4 3 22 2 4 2 11 2 36 2 18 2

52
26                                                      

P a

a

= − ⋅ + ⋅ − ⋅ + ⋅

= −
=

 

 
  So 1

2a = − .   

nd  
the  

 
  (Note:  If we are given no information about P other than its zeros a
  their multiplicity, we can choose any number for a.  Usually a = 1 is 
  simplest choice.) 
 
  Step 4:   Thus  
 

   
( ) ( )5 4 3 21

2 4 11 36 18P x x x x x x
5 4 3 21 112 18 92 2x x x x x= − + − +

= − + − +
 

 
Example 9:  Find all zeros of the polynomial P(x) = x4 + x3 + 3x2 – 5x. 

Solution: 

x 
in previous sections.  Since x is a  

  common factor, we have 
 

   

 
 
 

 the polynomial P(x) = x4 + x3 + 3x2 – 5  Step 1:  We begin by factoring
  using the tools we studied  

 

( )
( )
4 3 2

3 2

3 5

3 5                  Factor 

P x x x x x

x x x x x

= + + −

= + + −
 



Example 9 (Continued): 
 
  From the Rational Zeros Theorem (Section 5.3), we obtain the following  

 list of possible rational zeros: ± 1, ± 5.  Checking these using synthetic  
  division, we find that 1 is a zero and we get the following factorization. 
 

 

( ) ( )
( )( )

3 2

2

3 5

1 2 5            

P x x x x x

x x x x

= + + −

= − ++
   

 Fac       tor 1x −
 

 
 Step 2:   Using the quadratic equation, the zeros of the quadratic factor are  

   

 
 

2 4 20
2

1 2

x

i

− ± −
=

= − ±

 

 
  Step 3:   Thus the zeros of P(x) are 0, 1, –1 + i, and –1 – i. 

e  the examples so far, the complex zeros of polynomials 
ith real coefficients come in pairs.  Whenever a + bi is a zero, its complex conjugate  
 – bi  is also a

 real coefficients, and if the complex number z is a zero of  
P, then its complex conjugate 

 
As you may have notic d from
w
a  zero. 
 
 Conjugate Zeros Theorem:   
 
 If the polynomial P has

z  is also a zero of P. 
 

olynomial with integer coefficients that tisfies the given  
  conditions that P has degree 4, and zeros –3, ½, and 1 + i. 

roblem we are instructed to find a polynomial of degree  
  4, but we are only given three zeros, all of multiplic ut,  

 Step 2: The zeros of P(x) are –3, ½ , 1 + i, and 1 – i, so the required  
   polynomial has the form 

   

Example 10:   Find a p sa

 
 Solution: 
 
  Step 1:   In this p
 ity 1.  B
   since 1 + i is a zero, we know 1 – i by the Conjugate Roots  
   Theorem, and so we have a fourth zero. 
 
 

 
( ) ( )( )( ) ( )( ) ( )( )1

23 1P x a x x i= − − −  1x i x− + − −



Example 10 (Continued): 
 

  Step 3:   Now we expand and simplify the equation. 
 

( ) ( )( )( ) ( )( ) ( )( )
( )( )( )( )
( )( )( )

  ( ) ( )( ) ( )( )
( ) ( )( )
( )( )

1
2

1
2

2 5 3
2 2

22 25 3
2 2

2 25 3
2 2

3 1 1

3 1 1

1 1              E

                      Difference of1

2 2      

 Squares

P x a x x x i x i

a x x x i x i

a x x x i x i

a x x x i

a x x x x

= − − − − + − −

+ − − − − +

= + − − − − +

= + − − −

+ − +

=

xpand
2 5 3

2 2 1        Regroup1a x x x i x i= + − − − − +  

= −

( )4 3 2 131
2 2

                  

3 2              

Expand

E         n xpa da x x x x= + − + −

 Step 4:   Finally we must make all coefficients integers.  The lowest  

 

 
   common denominator of the coefficients is 2, so we set a = 2 
   and get 
 

(  ( ) )3 2 131
2 2

4 3 2

3 2x x x− + −
 

 Note that any other polynomial that satisfies the given requirements must  

nomial factors completely into linear factors if we use complex 
e complex numbers, then a polynomial with real coefficients 

Linear and Quadratic Factors Theorem:   

very p lynomial with real coefficients can be factored into a product of linear  
and irreducible quadratic factors with real coefficients. 

42P x x= +

2 6 13 4x x x x= + − + −
 

 
  be an integer multiple of this one. 

 

We have seen that a poly
numbers.  If we do not us
can always be factored into linear and quadratic factors.  A quadratic polynomial with no 
eal zer s is called irreducibler o  over the real numbers.  Such a polynomial cannot be 

factored without using complex numbers. 
 

 
 

 E o
 
 



Example 11:  Given the polynomial P(x) = x4 + 2x2 – 63 

 real coefficients. 
fficients. 

 
 Solution (a): 
 

 
 (a)  Factor P into linear and irreducible quadratic factors with

(b)  Factor P completely into linear factors with complex coe 
 

( )
( )( )
( )( )( )

4 2

2 2

2

Factor like a quadratic

uadratic Equation

 of squar

  
Q

                              

2 63

7 9                     

7 7 9  

                  or difference es formula

   

P x x x

x x

x x x

= + −

= − +

= − + +
 

 
 The factor x2 – 9 is irreducible since it has only the imaginary zeros ± 3i. 

 

 
 
 Solution (b): 
 

( )( )( )( )
 

( )( )( )( )

2 9

7 7 3 Quadratic Equa3 tion   

x

x x x i x i

+

= − + − +
 

7 7P x x x= − +
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